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Effects of Restricted Diffusion on MR Signal Formation
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Numerous functional MRI (fMRI) and diffusion MR studies have
recently boosted interest in the theory of MR signal formation in
biological systems in the presence of mesoscopic magnetic field in-
homogeneities. Herein we report an exact solution to the problem
of free induction decay (FID) and spin echo (SE) signal formation
in the presence of a constant field gradient in three models of one-,
two-, and three-dimensional restricted diffusion. We demonstrate
the transition with increasing diffusion coefficient from the os-
cillating FID signal behavior in the static dephasing regime to a
monotonic exponential behavior in the motional narrowing regime.
Quantitative criteria are presented for applicability of the Gaussian
approximation for the description of the MR signal. The spatial
distribution of signal density and the edge enhancement effect
are analyzed. We also demonstrate that the presence of restric-
tive barriers in a one-compartment model can lead to a quasi-
two-compartment behavior of the MR signal. This result suggests
a simple rationale for the experimental findings of biexponential
echo attenuation curves in MR diffusion experiments with tissue
systems. © 2002 Elsevier Science (USA)
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1. INTRODUCTION

The presence of magnetic field inhomogeneities is known to
play asignificant role in the process of magnetic resonance (MR)
signal decay. If such inhomogeneities are absent, the MR sig-
nal is attenuated mainly by the irreversible transverse relaxation
processes described by the relaxation time constant 75. An inho-
mogeneous magnetic field results in dephasing of nuclear spin
precession and therefore opens additional channels for the MR
signal decay. In application to MR imaging, the magnetic in-
homogeneities on the mesoscopic scale (much smaller than the
voxel size but much bigger than the atomic and molecular scale)
are of special interest because they orginate from internal, tissue-
specific sources, and hence can provide important information
of biological tissue structure and function.

In earlier works, attention was concentrated on the SE sig-
nal evolution (see, e.g., monographs (/, 2) and numerous refer-
ences therein). Functional MRI (fMRI) studies in biology and
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medicine initiated in (3) have recently boosted interest in FID-
type experiments. For example, in the case of fMRI, paramag-
netic deoxyhemoglobin in venous blood creates a mesoscopic in-
homogeneous magnetic field in the tissue surrounding the blood
vessel network, leading to FID signal dephasing dependent upon
blood oxygenation level (BOLD contrast). This phenomenon has
been broadly used to detect changes in brain activity.

A comprehensive analytical approach for calculating the FID
signal in the presence of mesoscopic field inhomogeneities was
developed in (4, 5) for the static dephasing regime, when dif-
fusion of the spins is negligible. In (6) the effect of diffusion
on the FID signal dephasing in a microvascular network was
studied in the slow-diffusion limit and in (7) in the motional
narrowing regime. Analytical approximations relying on the as-
sumption of a Gaussian distribution of phases accumulated by
the precessing spins and simple phenomenological exponential
spin correlation functions in the presence of mesoscopic field
gradients were proposed in (8) and further developed in (9). Nu-
merical calculations of the FID signal behavior in the presence
of mesoscopic field gradients were performed in a number of
studies (see, e.g., (10—12)).

In principle, the FID signal can be calculated by solving
the Bloch—-Torrey equation (/3). An exact solution for the case
of unrestricted diffusion with an arbitrary initial spin distribu-
tion and arbitrary time dependence of a field gradient was found
in Ref. (/4). However, a direct integration of this equation even in
the simplest one-dimensional model of restricted diffusion in
the presence of a constant field gradient faces substantial math-
ematical difficulties. The only known explicit analytical solution
was found for a semi-infinite interval in Ref. (15), where for the
case of diffusion between two boundaries, the Laplace transform
of the Green’s function of the Bloch—Torrey equation was also
obtained.

A rather powerful approach for the calculation of the MR
signal in the presence of external magnetic field gradients has
been proposed in (/6) in conjunction with studies of restricted
diffusion. This approach is based on dividing the gradient pulse
into successive short time intervals and then using a propagator
for each stage of the evolution—the so-called “multiple prop-
agator approach.” In Ref. (/7) this method was reformulated
in a simple-to-use form, which enables calculation of the sig-
nal as a product of matrices. As demonstrated in (16, 17) for
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one-dimensional diffusion and in (/8) for cylindrical and spher-
ical geometries, the multiple propagator approach provides a
very good approximation for the SE signal as verified by com-
parison with previous Monte Carlo simulations (/9-22).

In the present paper we apply a method similar to the mul-
tiple propagator approach to describe the FID and SE signal
behavior, exemplifying it by three classical models: (i) one-
dimensional (1D) model, in which diffusion is restricted by two
parallel infinite planes with the field gradient applied normal
to the planes; in this case, only diffusion along the normal af-
fects the signal; (ii) 2D model, in which spins diffuse in an
infinite cylinder, the field gradient being applied perpendicular
to the cylinder axis; only diffusion in the basal plane affects
the signal; (iii) 3D model, with spins diffusing in a sphere. All
boundaries are supposed to be reflecting and nondepolarizing.
We show how the static dephasing-like oscillating time depen-
dence of the FID signal transforms with increasing diffusion
coefficient to the monotonic exponential decay in the motional
narrowing regime. Quantitative conditions of applicability of the
Gaussian approximation for describing the FID and SE signals
are found. A spatial distribution of signal density and the edge
enhancement effect are analyzed. We also demonstrate that the
presence of restrictive barriers in a one-compartment model can
result in a quasi-two-compartment behavior of MR signal. This
result might contribute to explanation of experimental findings
(see, e.g., (23-28)) of biexponential diffusion attenuation.

2. RANDOM WALK APPROACH

In the general case, the signal produced by a system of a large
number of precessing spins at time ¢ after RF pulse is

S(1) = So()s(r),  s(1) = (explip(®)]), (1]

where the factor Sy(¢) describes the signal time dependence in
the absence of diffusion-sensitizing gradients and accounts for
the transverse T, relaxation, ¢(¢) is the phase accumulated by a
single spin by time 7, and (- - -) means averaging over all possible
initial positions and trajectories. In an inhomogeneous magnetic
field, H = H(r, t), the phase ¢(¢) of the spin moving along a
given trajectory r = r(¢) can be written as

t

RS f dr’ w(r(1"), 1), [2]

0

where the Larmor frequency w = yH. The phase in Eq. [2] de-
pends on all the points of the trajectory.

Following the well known procedure for numerical calcu-
lation of integrals, we divide the spin’s trajectory into n small
intervals At,t = N - At, and use the trapezoidal approximation,

2

n=I

N—1
o) = At - [w(r"’ CRAEURIN Spves tn)], [3]

where t, = n - At and r,, = r(¢,) are points successively passed
by the spin. Note that the Larmor frequency depends on time
both explicitly (due to the time dependence of the magnetic
field) and implicitly (due to the motion). In what follows, we
restrict ourselves to considering diffusion in a constant field
gradient, H=G - r, G = const. In this case, only the implicit
time dependence of the Larmor frequency is present and the
phase can be written in the form

N-—1
o(t) = yG At(ro J; vy r,,). [4]

n=1

The phase [4] corresponds to a specific spin’s trajectory. To
obtain the signal, we should further average the signal exp(i ¢(t))
over all possible trajectories. We introduce the probability of the
spin starting at point ry and successively passing the points ry,
Iy, ...,y attimes#, f, ..., ty. This probability is a product

,0(1'0) : P(rlvro» Al) : P(rZa ry, At) Teee” P(rNs ry-i, At)»
(5]

where p(rp) is the initial spin distribution (for the homogeneous
distribution, p(rg) = 1/V, where V is the system volume) and
P(r, ¥', Ar) is the propagator determining the probability that
a particle starting at the point r' moves to the point r during
the time interval Az. In the random walk approximation, the
propagator P(r, r’, At) satisfies the diffusion equation

P _ DV?P (6]
ot
with the initial condition, P(r, r’, 0) = 8(r —r’) (here 8(r) is the
Dirac delta function), and boundary conditions specified for the
system under consideration.
Substituting Egs. [4]-[5] in Eq. [1], we obtain the net signal
produced by the diffusing spins,

1
s = V/drO/drl~-~/drNexp|:iQ<r0—;rN
v v v

+r +rz+~-~+rN1)]'P(l'1,rov At)

X P(rp, ry, At)--- P(ry, ry_1, At), [7]

where Q = yG - At.

Because itis the Green’s function of the diffusion equation [6],
the propagator P(r, r’, t)allows the standard expansion in terms
of the orthogonal set of eigenfunctions {u,(r), k =0, 1,2, ...}
of the Sturm-Liouville problem for the geometry under consid-
eration,

00

up(r)ui(r') exp(—ix 1), [8]
k=0

1
P, Y, t)= —
( ) v
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where the A; are the corresponding eigenvalues. The functions
uy(r) are orthogonal to each other and satisfy the normalization
conditions

% / driug(0))* = 1. [9]
1%

Substituting expansion [8] in Eq. [7], after some rearrange-
ments, we obtain

s(t) = Z Fk|<9) kki Uik (Q) Ak, Upoks (Q)

kiks,..., kn 2
«f Q
X ANk Uk iy (Q) Ay ey F, -5 ) [10]
where
1
RQ = [ dr 1 (r) exp(i Q) (1]
v

Ak = exp(—Ag At) [12]
[13]

1
U = v /dru,f(r)uk/(r) exp(iQr).
v

Introducing the row vector F = {F}}, the matrix U= {Uri'},
and the diagonal matrix A = diag { A}, the expression [10]
can be written as a matrix product

s(t) = F(%) A - [0Q) - AanN ! FT (-%) [14]
where F' is the Hermitian conjugate of F.

An expression similar to Eq. [14] can be readily obtained (as
the particular case G(¢) = const) from the general expression for
an arbitrary gradient waveform given in Ref. (/7) in the frame-
work of the multiple propagator approach. The minor difference
is in the arguments of the vector elements F. However, though
the mathematical structures of both approaches are very similar,
our approach is based on the very transparent physical picture
of the random walk description of diffusion. Therefore we refer
to our approach as the random walk approach (RWA).

The matrix form of the expressions [14]-[18] for the sig-
nal substantially facilitates its calculation, which can be per-
formed by means of any matrix-handling tools like Mathematica
or MatLab. For this purpose we should choose an appropriate
time step At and a number of eigenfunctions involved in the
expansion [8] (the dimensionality M of the matrices U and A).
As the matrix elements Ay, [12] decrease exponentially with
Ak, it is possible to restrict M to some comparably small value
determined by the precision criteria (see below).

Our approach allows us to not only find out the net signal but
also calculate a signal density o = o (r, t) produced by all spins
starting from a given space point r as well as a signal density

o’ = o’(r, t) produced from a given point of the system, i.e.,
by all spins ending their trajectories at a point r at a time 7. The
density o (r, t) can be readily calculated by averaging a phase [4]
over all trajectories starting at a point ro without integration over
ro in Eq. [7]. Similarly, to calculate the signal density o’(r, ),
integration over the final point of spin trajectory ry should be
eliminated in Eq. [7]. As aresult, the signal densities o (r, ¢) and
o’/(r, t) can be written in the form

o = so(r, %) -AAn - [0@Q) - Aani¥!- FT(-%),
[15]
o'(r, 1) = F(%) AAn - [0Q) - AN - (r, _%),
[16]

where the elements of the vector ¢ are
$i(r, Q) = %ukm exp(iQr). [17]

It is easy to see that o (r, t) = o'(r, t). In addition, the function
o (r, t) can be proved to be an exact solution to the Bloch-Torrey
equation (/3) (the proof will be published elsewhere).

The expression [14] corresponds to the FID signal. A similar
expression for the SE signal with the echo time ¢ can be written
in the form

Q

sopn) =TT, T = F<5> A0 10Q)- Aan 2.

(18]

As mentioned in the Introduction, we will compare the results
of RWA with those obtained in the Gaussian approximation. In
this approximation, the signal is calculated by means of the phase
distribution function P (g, t), which is assumed to be Gaussian
(with zero mean value, (¢(2)) = 0) (29, 30),

2
L4 ] [19]

PO =GN eXp[_2<w2<f>>

The signal in the Gaussian approximation is equal to

(p*(1))
2

s(t) = /dw P(p, t)exp(ip) =6XP|:— ] [20]

For the signal in the presence of the field gradient G(¢), the
quantity (p?(¢)) can be written in the form

5,2 t f
W) = - / d / dt, f dr, f drs(G(t)ry)
0 0 \%4 1%

x (G(t)r2) P(ry, 12, 11 — 12). [21]
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In the case of FID signal, G(#) = const. The case of SE signal
can be described by changing the gradient sign at 7 /2.

3. THE 1D MODEL

In the simplest case of one-dimensional diffusion, in which the
spins are distributed between two nondepolarizing, reflecting,
infinite parallel planes localized at positions x = 0 and x = 2a,
a solution to the diffusion equation [6] with boundary conditions
0P /0x|y=0 = 0P /0xx=2, = 0 is well known (see, e.g., (31))
and is given by Eq. [8] with

Dp} mk
Mo=—5 Pr = > [22]
and the eigenfunctions
k
i (x) = e cos =, [23]
2a

where the normalization factors are no=1 and 1 =~/2 for
k#0.

For the constant field gradient symmetric with respect to the
center of the interval, H = G(x —a), we refldily obtain the com-

ponents of the vector F and of the matrix U,

Fr = ne f, U = nkznk/ [fisk + fik—r1]. 1241
B 2i® B 4 (1) exp(i®)
Ji= m[—exl?(—l + (=1)" exp(i ®)], s,

® = Qa = yGaAt.

There are two characteristic time parameters in the model,
determining the signal behavior: the diffusion time ¢p, which
determines the time needed for a spin to diffuse over the system
size a, and the dephasing time 7., which defines the time of signal
dephasing in the absence of diffusion,

[

a 1
—, = ——. [26]
D yGa

Ip

If we measure time in the units of one of these characteristic
times, for example, 7., the FID signal dependence on t = t/¢,.
will be governed by the sole dimensionless parameter

tt D
;. [27]

_ID N yGa

The parameter ® in Eq. [25] and the elements of the matrix
A [12] are equal to

b =Atr=—,

c

Awc = exp(=pip - At).  [28]

The dimensionless time t and the parameter p are similar to
the parameter ga =y Gad/2m (8 is the length of the gradient
pulses in pulse-gradient SE experiments) and the inverse “di-
mensionless gradient” used in Refs. (16, 17, 21), respectively.

If diffusion is absent (p =0), the signal s(7) in the one-
dimensional system under consideration is described by the well
known sinc-function expression,

. sint
s(t) =sinc(t) = — p=0 [29]
(this result can be trivially derived directly from the general
expressions [1]-[2]).

The expression for the FID signal for one-dimensional re-
stricted diffusion obtained in the framework of the Gaussian
approximation (marked below by the upper index (G)) can be
easily obtained from Egs. [20]-[21],

2 o0
s ()= exp|:—— Z p'BZk i :| [30]
PP By
where the function g(x) is
g(x)=exp(—x)+x — 1. [31]

The SE signal in the Gaussian approximation is described by
Eq. [30], in which the function g(x) should be substituted by the
function g(x) (see, e.g., (29, 30)),

g(x) = g(x)=x —34+4exp(—x/2) —exp(—x). [32]
4. THE 2D MODEL

The solution of the two-dimensional diffusion equation [6]

within a circle of radius a, satisfying the boundary condition

(0P/9p)|p=a = 0, can be written in the form [8] with the eigen-
functions (31)

ur(p, 1) = u/m(p9 1) = nnu (ﬂnu ) exp(in ), [33]

and the eigenvalues

. [34]

The radius p and polar angle ¢ define the two-dimensional
radius-vector p in the polar coordinate system, the J,(x) are the
Bessel functions (n =0, =1, £2,...),and 8,, (0 =0, 1, 2, ...)
are nonnegative roots of the equation J(x) = 0. The normaliza-
tion factor n,,, determined by the condition [9] is equal to

n2 —1/2
M = [(1 - — ) -J,?(ﬂm)] :
np

[35]
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TABLE 1
Roots of the Equations J,(x) =0 (2D Model) and j,(x) =0
(3D Model) in Ascending Order

ﬂnu

k n n 2D 3D

0 0 0 0 0

1 1 0 1.8412 2.0816
2 2 0 3.0542 3.3421
3 0 1 3.8317 4.4934
4 3 0 4.2012 45141
5 4 0 5.3175 5.6467
6 1 1 5.3314 5.9404
7 5 0 6.4156 6.7565
8 2 1 6.7061 7.2899
9 0 2 7.0156 7.7253

Thus, in the two-dimensional case the eigenfunctions {u; } are
numerated by two indices, k = (n, u). For numerical calcula-
tions based on Eq. [14] one should find roots of the transcen-
dental equation J;(x) = 0 for different n, arrange the roots in
ascending order, and choose first M of them, where M is a cho-
sen dimensionality of the matrices U and A. The first 10 roots
(in ascending order) with corresponding values of k, n, and u
are given in Table 1.

It should be noted that the roots corresponding to the Bessel
function of orders n and —n are degenerate, 8,, = S_,,. This
fact makes it possible to facilitate numerical calculations and
shorten the dimensionality M of the matrices U and A (while
delivering the same accuracy in the signal). For this purpose it is
convenient to use the linear combinations of the eigenfunctions
[33] with opposite 7,

M;;)(P, t) = Nnp Jn (ﬁn/t,%)cosnd/:
[36]

WP 1) = Tinn J (,3 3>sinmp

nw \Ps nIn\ P ,

where 7, = no, and 7, = nw«/z for n # 0. In this case,
the index n runs over only nonnegative integers, but the eigen-
functions with n # 0 are numerated not by two but three in-
dices, k = (n, u, =). However, it turns out that the compo-
nents of the vector F corresponding to uﬁlp) are equal to 0,
whereas the matrix U is diagonal over the indices + and —.
Therefore all terms connected with u(n;) do not contribute to the
matrix product in Eq. [14], and we can operate with only the
functions u{;}).

Substituting the eigenfunctions [33] in Eqgs. [11] and [13],
for the constant field gradient G applied in the circle’s plane
(XY) in an arbitrary direction (let it be X, i.e., H=Gx =
Gp cos ), we obtain the components of the vector F and of the
matrix U:

Fk = Fnu
- a 2w
_ My . P
=— fpdp/dw exp(i QpCOSW)-Jn(ﬂW—>cosn¢
wa a
0 0
N (I)Jn— (qD)Jn(/gn )_ ﬁn Jn(CD)Jn— (,Bn L)
= 2(_1) r)n;/.|: L l/«2 CI;; ! ! s
( npw )
[37]
Uklkz = U"]Ml,nzuz
- 5 a 2w
_ i oy d d .
=T a2 pap Y exp(i Qp cos ¥)
0 0

14 o
I, (,3,,1,“ Z)cosnll//an (ﬁnzm g>cos nyyr

= Tnggus fingpry - [(— T WE(@) 4 (=)W ()],
[38]

where W+ are given by

1

ij]:kz(q))zfxdx aninl(Qx)Jnl(,Bnlp.lx)-]nz(ﬂnzuzx) [39]
0

with ® = Qa = y GaAt.

An analog of the sinc-function describing the FID signal in
the static dephasing regime (p = 0) for the 2D model has the
form

s(r) = 2J1t(r)’

p=0. [40]

In the Gaussian approximation the FID signal is described by
an expression similar to Eq. [30]:

00 2
sD(r) = exp[—% > _&Whr) }

[41]
p u=0 1316;L('312u - 1)

Here B, are the positive roots of the equation J{(x) = 0 and
the function g(x) is given by Eq. [31].

5. THE 3D MODEL

The solution of the three-dimensional diffusion equation [6]
within a sphere of radius a, satisfying the boundary condi-
tion (3P /0r),=, = 0, can be written in the form [8] with the
eigenfunctions (37)

r
a

Ue(0, 1) = U (X, 1) = Ny (ﬁ,m )P,;"(cos 0) exp(imi),

[42]
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and the eigenvalues

Dﬂ,%u

)"k E)\‘”M = a2

[43]

Here the radius » and polar and azimuth angles 6 and v define
the three-dimensional radius-vector r in spherical coordinates,
the j,(x) are the spherical Bessel functions (n =0, 1,2, .. .), the
Bnu(u=0,1,2,...) are the nonnegative roots of the equations
Ji(x)=0, and the P)"(x) (|m| <n) are the associated Legendre
polynomials. The normalization factor 7,,,, determined by the
condition [9] is equal to

) __F@n+nm—mm! i Tﬂ
nm 3(n + |m|)V [ '%ll — n(n —+ l)]]nz(ﬂnu) .
[44]

Thus, in the three-dimensional model the eigenfunctions {u}
are numerated by three indices, k = (n, m, ;). As in the 2D
model described in the previous section, for numerical calcu-
lations based on Eq. [14] one should find roots of the transcen-
dental equations j,(x) =0 for different n, arrange the roots in
ascending order, and select the first M of them, where M is a
chosen dimensionality of the matrices U and A (note that these
roots are degenerate with respect to the azimuth index m). The
values of the indices n, u corresponding to the first 10 roots in
the 3D model (arranged in ascending order) are the same as in
the 2D model discussed above, therefore they are given in the
same Table 1.

Substituting the eigenfunctions [42] in Eq.[11], for a constant
field gradient G applied in an arbitrary direction (letitbe Z, i.e.,
H = Gz = Gr cos 0), we obtain the components of the vector F,

3 nm
il ”/r dr/sm@d@/
4rad

x exp(i Qr cosf) - Jn(,BW )Pm(COSQ)exp(zml//)

F.=F,

nmp =

CI)'n7 d 'n n — Pn .nq) 'nf n
_ 31.,177"0#[ Jn—1(P) (ﬂ(“i _ﬂq,;zj)( )Jn—1(P M)} Amo,
np

[45]

where A,,, is the Kronecker delta. Thus, only components of
the vector F corresponding to m = 0 differ from zero. It can also
be easily shown that the matrix U is diagonal with respect to
the azimuth index m, Uy m,uy namaps ™~ Domy,m,- Consequently,
all terms connected with the eigenfunctions u; with m # 0 do
not contribute to the matrix product in Eqgs. [14]-[18], and we
will further operate only with the eigenfunctions with m =0,
omitting the azimuth index m in all expressions.

Substituting the eigenfunctions [42] with m =0 in Eq. [13]
and making use of the formula (32)

min{nn,}

Pnl(x)Pnz(x): Z Cn]nzlPill+i12—21(-x)a
=0
10— 2 2n, — 41+ 1
Cpppg = Sttt BN AT ZHED) -y
Any+ny—1 ny +2n; =21+ 1)
_@2p-D!l
ap—T,

we obtain the elements of the matrix U in the sphere model,

Uk1k7_ = Unlﬂlvn2ﬂ2

a T 2
3 n n M /
— M/rzdr/sm9d9/dl/fexp(lQrCOSI/f)
4 a’
0 0 0

(,Bnl;u >Pn](C039)Jn2 <ﬂnz/t2 )Pn,(COSQ)

min{ny,nz}

cny+ny—21
= 3nn1u1nnzuz E Cnlnzll 1 Vk1k21(Q)1
=0

[47]

|

Vklkzl(Q) = /-xzd-x ji’l1+l’l2721(Q-x)ji’l1 (ﬁnlmx)jnz (ﬂnzﬂz-x)»
0
[48]

where ® = Qa = yGa At.
An analog of the sinc-function describing the FID signal in the
static dephasing regime (p = 0) for the 3D model has the form

3h(t) 3 .
= —3(smt — TCOST),
T

s(t) =

p=0. [49]

In the Gaussian approximation the FID signal is described by
the expression similar to Eq. [30],

BrT)
sO) = exp|: p £ i|
' 22/31;/. ﬁl/l,_z)

where the B, are the positive roots of the equation jj(x)=0
and the function g(x) is given in Eq. [31].

[50]

6. RESULTS AND DISCUSSION

As mentioned above, for numerical calculations in the frame-
work of RWA, we need to choose two quantities: the time-step
At and the matrix dimension M. The first value should be chosen
such that Ar will be much less than both the characteristic times:
At L tp and At Lt.. If p <1, then the condition At K¢, is
stricter and the dimensionless interval At = At/t. = 1/20 turns
out to be sufficiently small for calculating the signal with an ac-
curacy of 0.5%. For p > 1, the inequality At < 1/p must hold;
for example, for p =2 this accuracy is achieved at At ~ 1/50.
The matrix dimension M is determined by the k-dependence
of the matrix elements Ay, which decrease exponentially,
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Ay = exp(—pB}t), therefore smaller p’s require larger M. Our
calculations showed that in the interval T <20 the accuracy
0.5% is achieved at M =10 for p <0.1. For 0.1 < p <1 one
can choose M =5, and M =3 is enough for p > 1. In what fol-
lows, we display numerical results calculated according to the
above-described criteria.

General Features of MR Signal

The FID signal for the 1D model is plotted in Fig. 1 for several
values of the parameter p. The curves corresponding to small
p (0, 0.05, 0.1) demonstrate oscillating behavior whereas the
curve for p = 0.5 is monotone. In more detail the evolution of the
1D FID signal behavior with increasing parameter p is shown
in Fig. 2 in a logarithmic scale (solid lines). Deep minima of
In |s(7)| correspond to roots of s(7) and obviously tend to —oco.
For small p, the behavior of the signal is similar to the oscillating
behavior in the static dephasing regime (see Eq. [29]); the roots
of the function s(t) are arranged approximately equidistantly,
therefore we can speak about a “period” of the oscillations. With
p increasing, the “period” of the oscillations increases, the roots
of s(7) shifting to higher values of . For p > 0.45 the minima
disappear, which means the function s(7) becomes monotone. In
this monotone regime the slope of the curves in Fig. 2 decreases
with p increasing—a manifestation of the motional narrowing
effect.

SUKSTANSKII AND YABLONSKIY

FIG. 1. The FID signal s(¢) in the 1D model. Times are expressed in di-
mensionless units, T =t¢/t., with . being the characteristic dephasing time,
t. =(yGa)~!. The parameter p is ./tp = D/(y Ga>). The transition between
the static case with oscillating FID signal to the motional narrowed case with
monotonic signal is evident between p =0.2 and 0.5.

There are three possible ways for the transformation from
oscillating to monotone behavior of the function s(t) to occur:
(1) the “period” of the oscillations increases with p increasing
and asymptotically tends to infinity at p — o0; (2) the “period”

inls|  p=o Inls| p=0.1 mlsi  p-o02 mlsl  p=03

0 —"7 0 E—— T oo g

5 10 15 20 5 10 15 20
2] (\m 2] 2] 2]
-4 -4] 4] -4
-6 -6 -6 -6
-84 -8 -84 -84
-104 -104 -104 -104

Inlsl  p=04 In|s| p=045 Inls|  p=1

0 ———' 0 ————' 0 T S

5 10 15 20 5 10 15 20 10 15 20

\Y NS N

\ \) \3
-2 \ -2 \ 2 N 24

N N\ N ~
AY
\\ N\ A Y
\ A N
-4 N -4 N -4 s -4
\ N \
N N N
\ N

-6 AR -6 -6 81
-8 -8+ -84 -8
-10. -10 -10/ -10

FIG. 2. The FID signal (logarithmic scale) in the 1D model for different values of the parameter p =1./tp. Nearly periodic oscillating behavior is present for
p < 0.4 with period increasing with increasing p. For p > 0.45, a monotonic decay is evident. The dashed curves show the Gaussian phase approximation.
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of the oscillations tends to infinity at a certain finite bifurca-
tion point p = p.; (3) there is a set of bifurcation points, in
which roots 7,(n =1, 2, ...) of the equation s(t) = 0 disappear
by pairs. To determine how the transformation actually occurs,
we numerically analyze the dependence of the roots 7, on the
parameter p. Figure 3 shows the p-dependence of the small-
est root 7] (the p-dependence of the other roots is similar). For
p =0, we have 1, =nm (see Eq. [29]); with increasing p all
roots also increase, remaining approximately equidistant, and at
p=p.~0.443 all 7, tend to infinity. It means that there is a
single bifurcation point p. =0.443, where the “period” of os-
cillation of the FID signal s(t) becomes infinite and monotone
behavior of the FID signal sets in (case 2). The dashed lines in
Fig. 2 display the FID signal calculated in the framework of the
Gaussian phase approximation (see Eq. [30]).

The logarithm of the SE signal in the 1D model, calculated on
the basis of Eq. [18], is illustrated in Fig. 4 for the same values
of the parameter p as in Fig. 2 for the FID signal. In the static
dephasing regime (p =0), we obtain ssg = 1; we therefore sub-
stituted this trivial graph by that for p =0.01. For all p the
dependence of the In(ssz(7)) on T is monotone; however, in the
interval 0.1 < p < 0.3 there are characteristic oscillations of its
derivative with respect to 7. As for the FID signal, the “period”
of these oscillations increases as p increases, and for p > 0.4 the
oscillations disappear. The Gaussian approximation adequately
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FIG. 3. The dependence of the lowest root (t;) of the equation s(t) =0 in
the 1D model on the parameter p =t./¢p. At the bifurcation point p =0.443 14

(as well as all other roots of this equation) tends to infinity and the signal s(t)
becomes a monotone function.

describes the SE signal in the short-time interval for small values
of p and in the motional narrowing regime (p > 1).

In Figs. 5 and 6 we plot In(|s(z)|) for the FID signal in the
2D and 3D models, respectively (solid lines), along with the
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FIG. 4. The SE signal (logarithmic scale) in the 1D model for the same values of the parameter p =t./tp as in Fig. 2 for the FID signal. While the echo
amplitude decay is always monotonic, oscillatory variations in the slope appear for p <0.3.
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FIG. 5.

FIG. 6. The FID signal (logarithmic scale) in the 3D model for different values of the parameter p =1./tp. The oscillating behavior is present for p < 0.2.

In|s|

SUKSTANSKII AND YABLONSKIY

In|s|

In|s}

p=0 p=0.05 p=01 p=0.15
T
0 —————— 0 —————— " e
5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20
\
-2 2] 2] \
-4
-4 -4
-6
-6 -6
-84
-84 -8
-104
-104 -104
Inls]  p=02 nlsl  p=03 sl p=08
0 T 0 T
5 10 15 20 5 10 15 20 10 15 20
\\
-2 -2 N -2
Ay
\\ \\
\ A
-4 AY -4 -4
4 . 4 S 4
\
N
\
-6 \ -6 6
\.
-84 -84 -8 -8
-104 ( -10/ r -104 -10

The FID signal (logarithmic scale) in the 2D model for different values of the parameter p =1./tp. The oscillating behavior is present for p < 0.3.

In|s _ Infs
In|s| p=0 . In|s| p=003 Is] p=005 sl p=0.1
) S S — s 9 e —
5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20
2] 2]
4] -4
6 -6
-8 -84
-104 -10/
In!s| _ In|s|
i p=0.15 p=05 .
5 10 15 20 10 15 20
N \\ &
-2 N 2 o, 2] A 24
\ ~ Y
\\ \\ \\
-4 AN -4 N -4 -4
N
\
AN
-6 -6 61 8-
8- -8 -84 -84
-10J -10J -10/ -10




EFFECTS OF RESTRICTED DIFFUSION ON SIGNAL FORMATION

corresponding results of the Gaussian approximation (dashed
lines). The general features of these graphs are the same as for
the 1D model. In the static dephasing regime, when the signals
are described by Egs. [40] and [49], and for small p-value, the
FID signal oscillates, the distances between roots of the function
s(t) increasing as p increases. The transition from the oscillating
behavior to the monotone one takes place for smaller values of
the parameter p than in the 1D model: the oscillations disappear
at the bifurcation point p. =~ 0.27 in the 2D model and p. ~0.17
in the 3D model.

Thus, the evolution of the FID signal from static dephasing-
like behavior to the motional narrowing regime in the 2D and
3D model is “faster” than in the 1D model. This result should
be expected because one-dimensional diffusion along the field
gradient in a sphere is effectively more restricted than in a circle,
which in its turn is more restricted than in a segment.

Gaussian Approximation

As seen from Figs. 2, 4-6, the signals predicted by the
Gaussian approximation for small p-values coincide with the
exact results in the short-time regime. As p increases and os-
cillations in the time-dependence of the signals disappear, the
discrepancy between solid and dashed curves progressively nar-
rows, and for p > 1 in the 1D model the Gaussian approxima-
tion becomes an adequate approach for all time intervals, as ex-
pected. In the 2D and 3D models, the Gaussian approximation
becomes adequate in all time intervals for p ~0.8 and p ~0.5,
respectively.

A qualitative comparison of the exact results obtained in the
framework of RWA with those obtained in the Gaussian phase
approximation can be made by visual comparison of the solid
and dashed curves in Figs. 2 and 4-6. To estimate quantitatively
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the applicability of the Gaussian approximation, we compute the
relative error

e = (s(r) = s0) /s(v) [51]
at the time 7, where the signal has decayed by a certain factor
v, S(t)/So=v. In Tables 2 and 3 we provide the relative error
(in %) made by the Gaussian approximation in comparison with
the exact results at the times 7;; and 745, where v =e¢~! and
v=e2, respectively, for the FID and SE signals in the 1D, 2D,
and 3D models.

For the FID signal, the error monotonically decreases with
increasing value of the parameter p, whereas the times t,;; and
7,42 monotonically increase. A single exception is the 2D model,
where (741, p=0.1) < €(t41, p=0.2). For the SE signal, the
dependence of the error on p is nonmonotonic. It should be un-
derlined, however, that the error for the SE signal at the time
741 does not exceed 7% even for the 1D model; this means that
the Gaussian approximation is a rather good approach in the
most important (from the experimental point of view) acquisi-
tion time interval, T < 7,4 (i.e., with substantial remaining signal
amplitude).

Short- and Long-Time Approximations

Analytical expressions for both FID and SE signals can
be obtained in some limiting cases. Consider first the case
tp <t.(p>1). In the motional narrowing regime ¢ > fp, the
behavior of the FID signal is similar to that for the SE signal
because, due to fast diffusion, the 180° RF pulse cannot refo-
cus the spin’s phase and therefore does not substantially affect
the signal. In this regime, both the FID and SE signals can be
described within the framework of the Gaussian approximation.

TABLE 2
The Relative Error (in %) Made by the Gaussian Approximation as Compared to the Exact Results Obtained in the Framework
of the Random Walk Approach for the FID Signal

2

s(ta)=e"! s(ta) =€~
s(ta1) — sO(zar) % s(ta2) — O (1)
e ——— ] rdl — % rdz
s(tq1) 5(Tq2)

p 1D 2D 3D 1D 2D 3D 1D 2D 3D 1D 2D 3D
0.1 23 16 14 2.4 3.0 3.7 131 94 78 3.1 4.0 53
0.2 23 17 10 2.7 3.7 5.1 118 70 33 3.6 5.4 8.7
0.3 22 13 6 3.1 4.6 7.0 89 40 13 4.3 79 13.1
0.4 18 9 3 3.5 5.8 9.1 68 21 7 5.5 10.7 17.5
0.5 15 6 2 4.1 7.1 11.2 45 13 4 7.0 13.5 21.9
0.6 11 4 1 4.7 8.4 134 29 9 3 8.5 16.3 26.3
0.7 9 3 1 54 9.8 15.5 21 6 2 10.1 19.1 30.7
0.8 7 2 0 6.1 11.1 17.7 16 5 1 11.7 21.8 35.1
0.9 6 2 0 6.9 12.5 19.9 12 4 0 13.2 24.6 39.5
1.0 5 1 0 7.6 13.8 22.1 10 3 0 14.7 27.3 44.0

Note. Separate results are given for times where the signal has decayed by 1/e and 1/e?. The parameter p is t./tp. Times are expressed in dimensionless units,

T =t/t.
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TABLE 3

The Relative Error (in %) Made by the Gaussian Approximation as Compared to the Exact Results Obtained in the Framework
of the Random Walk Approach for the SE Signal

sse(tar) = e”! sse(tan) = €72
sse(Td1) — AVS('E)(TdI)’ % w sse(Td2) — SébG')(fdz)’ % -
sse(Td1) sse(Taz)

P 1D 2D 3D 1D 2D 3D 1D 2D 3D 1D 2D 3D
0.1 3 1 3 6.4 6.8 7.2 24 10 18 9.0 9.0 9.8
0.2 2 5 5 5.6 6.4 7.4 17 26 19 9.8 9.1 11.4
0.3 6 6 4 5.6 6.6 8.6 28 23 11 7.6 10.2 14.8
0.4 7 6 3 5.6 7.4 10.2 32 17 6 8.2 12.3 18.7
0.5 7 5 2 5.8 8.4 12.2 28 12 4 9.0 14.8 22.7
0.6 7 3 1 6.2 9.4 14.2 23 8 2 10.2 17.2 27.0
0.7 6 3 1 6.6 10.6 16.2 18 6 2 114 20.0 31.3
0.8 5 4 0 7.2 11.8 18.2 14 5 1 12.8 22.5 35.6
0.9 4 2 0 7.8 13.2 22.4 11 4 0 14.2 25.1 40.0
1.0 4 1 0 8.4 14.3 22.5 9 3 0 15.6 28.0 44 4

Note. Separate results are given for times where the signal has decayed by 1/ and 1/e?. The parameter p is t./tp. Times are expressed in dimensionless units,

T=t/t.

In the long-time limit, # > tp (pt > 1), the arguments of the
functions g(x) [31] for the FID signal and g(x) [32] for the SE
signal, entering Eqgs. [30], [41], and [50], are large; therefore
g(x)~ g(x)~x, the sums in Egs. [30], [41], and [50] can be
calculated exactly, and the signal can be written as

G 2 4
s(T) >~ sse(7) =~ eXP(-é“dz) = eXP(-QM), [52]
p D

where the numerical coefficient ¢, is determined by the model
dimensionality d:

g =2/15, & =7/96, g3 =8/175 [53]
(for the SE signal, an expression similar to Eq. [52] was ob-
tained in (30)). Note that ¢3 < {, < ¢1; i.e., the signal decay rate
decreases going from 1D to 2D to the 3D model. This result
should be expected because the motional narrowing effect is
stronger in the model of higher dimensionality, where diffusion
along the field gradient is effectively more restricted.

In the short-time limit, ¢ < #p <t.(pTt K 1), the functions
g(x) and g(x) can be approximated as g(x)~x?/2 and
2(x) ~ x3/12, respectively. The FID signal in this limiting case
takes the form

2
5(7) ~ exp(—&472) = exp[—sd(L> } [54]
yGa

with the coefficients &; depending on the model dimension-
ality d:
& =1/6,

&=1/8, &=1/10. [55]

Note that & <&, <&, that means spin dephasing is faster
in the system of lower dimensionality. The SE signal in the
short-time limit is independent from the model dimensional-
ity d and the system size a and is described by the classical
expression (33),

~ L3\ _ 1 21,3
ssp(T) exp( 12]91’ ) = exp|: 12()/G) Dt :| [56]
(general conditions of applicability of such a *-behavior of SE
signal is discussed in (34)).

Thus, the behavior of the FID signal in the short-time limit dif-
fers considerably from that of the SE signal. This difference takes
place not only if r < tp <. but also in the slow motion regime,
when ¢ « 1. <tp. In this regime, the Gaussian approximation
is adequate for all p-value, and the FID signal is described by
parabola

s(t) ~ 1 —&;7? [57]

(this result can be readily obtained by expanding the exponent
in Eq. [56] or the formulas for the case p = 0[29], [40], and [49]
in series in 7).

It should be mentioned that a parabolic time dependence in
the short-time interval (t < t., tp) is a general property of FID
signal regardless of a specific system structure, as shown for
particular cases in (4, 9, 35) and explained in (5).

Edge Enhancement Effect

Another important effect—the so-called edge enhancement
effect (36—41)—also follows from our theoretical approach.
The physical origin of this effect is that spin diffusion in the
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FIG.7. The magnitude of the FID (solid lines) and SE (dashed lines) signal
density |o| in the 1D model as a function of the dimensionless coordinate (x /2a)
for fixed time t =¢/f. = 10 and p =0.005 (curves 1) and p =1 (curves 2). The
edge enhancement is pronounced in curves 1, when t = 0.05 7p, and is practically
absent in curves 2, when t =17p.

vicinity of system boundaries is effectively more restricted
than that away from the boundaries. The edge enhancement
effect is pronounced in the case, when two conditions are
satisfied: (1) a characteristic diffusion distance xq~ (Dt)!/?
that a spin travels over time 7 is much smaller than a sys-
tem size a, xo K a, or t KLtp; (2) the field gradient is strong
enough to result in a substantial phase difference over xp:
yGxot > 1, ie., t> (tCZtD)l/3 (note that the combination in
the right-hand side of the latter inequality is independent from
the system size a). In dimensionless variables, these conditions
are

p P <r<ph [58]

Obviously, the double-inequality [58] can hold only for p < 1.
Inthe case t > tp, diffusion “stirs” all spins and the signal density
becomes practically homogeneous at time ¢.

As mentioned in Section 2, the RWA makes it possible to cal-
culate the signal density o (r, ¢) produced by spins starting from
a given space point r and the signal density o’(r, 7) from a given
point r, i.e., the signal from all spins ending their trajectory at
r at time ¢ (remind that o (r, ) =o’(r, t)). The magnitude |o|
of the FID (solid lines) and SE (dashed lines) signal density
for the 1D model is plotted in Fig. 7 as a function of the di-
mensionless coordinate (x/2a) for two values of the parame-
ter, p =0.005 (curves 1) and p=1 (curves 2) (time is fixed,
7 =10). As expected, the curves 1 corresponding to p =0.005
have pronounced maxima at the boundaries (at x =0 and at
x =2a) whereas curves 2 are practically flat.
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Biexponential Diffusion Attenuation

In the regime, when the edge enhancement effect can be ob-
served, a general picture of the net signal is similar to that in a
two-compartment system: one of the “compartments” comprises
spins located far from the edges and their diffusion can be consid-
ered as unrestricted (fast-diffusion “compartment”). Diffusion
of spins from the second “compartment,” located in the vicinity
of the boundaries (at distance ~(Dr)'/?), is more restricted due
to encountering the boundaries (slow-difusion “compartment”).
Therefore one can anticipate that the signal in this situation can
be described by means of the biexponential function usually
used for describing signals in two-compartment models,

s = fexp(=bDy) + (1 — flexp(—bD»), [59]
where D; and D, are the apparent diffusion coefficients
(ADC) in the compartments, f is the volume fraction of
the first compartment, and b is the b-value determined by
a gradient waveform. For the SE signal with the echo time
t,b=(yG)>t3/12.

We compared the SE signal in the 1D model, obtained in the
framework of RWA, with the biexponential function [59] by
fitting ssg as a function of the parameter b to Eq. [59] in the in-
terval bD < 10 for several fixed dimensionless times t/ =1/1p.
The results are summarized in Table 4. As we see, the biex-
ponential function provides an excellent description of the the-
oretical curves sgg (b) for t/ <1/6. The “volume fraction” of
the fast-diffusion “compartment” decreases with time because
the number of spins encountering the boundaries increases. For
higher t’(z’ > 1/6), the division of the system into “compart-
ments” becomes meaningless: all the spins are stirred by dif-
fusion and the signal cannot be described by the biexponential
function [59]. For v’ ~ 1 the signal dependence on the b-value
becomes practically monoexponential. This regime corresponds
to ¢t ~tp, when all spins are stirred by diffusion and encounter
the boundaries and the signal density is almost uniform (dashed
curves in Fig. 7).

Thus, the close fit of experimental results to a biexponential
function [59] is not sufficient to confirm the presence of two

TABLE 4
The Results of Fitting the Theoretically Calculated SE Signal in
the 1D Model as a Function of the b-Value to the Biexponential
Expression [59] for Different Dimensionless Time 7/ = ¢ /¢

T =t/tp f D, D x*
1/50 0.94 0.851 0.141 1.1-1077
1/20 0.91 0.842 0.117 1.9-1077
1/10 0.89 0.778 0.104 1.1-1077
1/6 0.86 0.706 0.092 1.4-1077

Note. Dy and D; are the fast and slow apparent diffusion coefficients, respec-
tively, and f is the volume fraction of the fast-diffusion component; X2 is the
statistical error.
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disntinct physical compartments: indeed, in the presence of re-
strictive barriers both fast and slow terms in [59] can arise from
the same physical compartment. This issue may be of interest for
interpretation of experimental data in the brain tissue and other
biological objects, where a biexponential diffusion attenuation
of the MR signal for large b-value (bD > 1) has been observed
(see, e.g., (23-28)) but has not been explained. Our results (bi-
exponential behavior for large bD and small volume fraction
corresponding to the slow-diffusion component) are in accor-
dance with experimental data and demonstrate the importance
of restrictive barriers. The important role of motional restrictions
in explaining the origin of biexponential diffusion attenuation
in tissue systems has also been demonstrated recently (42) by
extensive computer simulations based on detailed anatomic im-
ages of axonal architecture.

7. CONCLUSIONS

We have presented a theoretical framework for analysis of the
FID and SE signal behavior in the presence of magnetic field
gradients. The FID signal time dependence in 1D, 2D, and 3D
models of restricted diffusion is shown to depend crucially on
the ratio between dephasing and diffusion characteristic times,
p=t./tp.For p =0 (no diffusion, the static dephasing regime)
and for small values of p the FID signal oscillates with time, the
“period” of the oscillations increases with increasing p and tends
toinfinity atabifurcation point p = p.. The value of p. decreases
going from 1D to 2D to 3D. For p > p. the FID signal time
dependence is monotonic and approaches a monoexponential
function for p ~ 1 (motion narrowing regime). We have also
provided a quantitative comparison of our results (for the FID
signal as well as for the SE signal) with those obtained in the
Gaussian phase approximation. Because the latter is broadly
used for interpretation of experimental data, such a comparison
can be useful for estimation of the corresponding error. Our
approach makes it possible to analyze a space distribution of the
signal density (transverse magnetization) and to demonstrate the
edge enhancement effect. The presence of restrictive barriers in
a one-compartment model can lead to a quasi-two-compartment
behavior of the MR signal. This result suggests a simple rationale
for the experimental findings of biexponential echo attenuation
curves in MR diffusion experiments with tissue systems.
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