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Effects of Restricted Diffusion on MR Signal Formation
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Numerous functional MRI (fMRI) and diffusion MR studies have
recently boosted interest in the theory of MR signal formation in
biological systems in the presence of mesoscopic magnetic field in-
homogeneities. Herein we report an exact solution to the problem
of free induction decay (FID) and spin echo (SE) signal formation
in the presence of a constant field gradient in three models of one-,
two-, and three-dimensional restricted diffusion. We demonstrate
the transition with increasing diffusion coefficient from the os-
cillating FID signal behavior in the static dephasing regime to a
monotonic exponential behavior in the motional narrowing regime.
Quantitative criteria are presented for applicability of the Gaussian
approximation for the description of the MR signal. The spatial
distribution of signal density and the edge enhancement effect
are analyzed. We also demonstrate that the presence of restric-
tive barriers in a one-compartment model can lead to a quasi-
two-compartment behavior of the MR signal. This result suggests
a simple rationale for the experimental findings of biexponential
echo attenuation curves in MR diffusion experiments with tissue
systems. C© 2002 Elsevier Science (USA)

Key Words: magnetic resonance; MRI; fMRI; relaxation effects;
diffusion MR.
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1. INTRODUCTION

The presence of magnetic field inhomogeneities is known to
ay a significant role in the process of magnetic resonance (MR)
gnal decay. If such inhomogeneities are absent, the MR sig-
l is attenuated mainly by the irreversible transverse relaxation
ocesses described by the relaxation time constant T2. An inho-
ogeneous magnetic field results in dephasing of nuclear spin
ecession and therefore opens additional channels for the MR
gnal decay. In application to MR imaging, the magnetic in-
mogeneities on the mesoscopic scale (much smaller than the
xel size but much bigger than the atomic and molecular scale)
e of special interest because they orginate from internal, tissue-
ecific sources, and hence can provide important information
biological tissue structure and function.
In earlier works, attention was concentrated on the SE sig-
l evolution (see, e.g., monographs (1, 2) and numerous refer-
ces therein). Functional MRI (fMRI) studies in biology and
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edicine initiated in (3) have recently boosted interest in FID-
pe experiments. For example, in the case of fMRI, paramag-
tic deoxyhemoglobin in venous blood creates a mesoscopic in-
mogeneous magnetic field in the tissue surrounding the blood
ssel network, leading to FID signal dephasing dependent upon
ood oxygenation level (BOLD contrast). This phenomenon has
en broadly used to detect changes in brain activity.
A comprehensive analytical approach for calculating the FID

gnal in the presence of mesoscopic field inhomogeneities was
veloped in (4, 5) for the static dephasing regime, when dif-
sion of the spins is negligible. In (6) the effect of diffusion

the FID signal dephasing in a microvascular network was
udied in the slow-diffusion limit and in (7 ) in the motional
rrowing regime. Analytical approximations relying on the as-
mption of a Gaussian distribution of phases accumulated by
e precessing spins and simple phenomenological exponential
in correlation functions in the presence of mesoscopic field
adients were proposed in (8) and further developed in (9). Nu-
erical calculations of the FID signal behavior in the presence
mesoscopic field gradients were performed in a number of

udies (see, e.g., (10–12)).
In principle, the FID signal can be calculated by solving
e Bloch–Torrey equation (13). An exact solution for the case
unrestricted diffusion with an arbitrary initial spin distribu-

on and arbitrary time dependence of a field gradient was found
Ref. (14). However, a direct integration of this equation even in
e simplest one-dimensional model of restricted diffusion in
e presence of a constant field gradient faces substantial math-
atical difficulties. The only known explicit analytical solution

as found for a semi-infinite interval in Ref. (15), where for the
se of diffusion between two boundaries, the Laplace transform
the Green’s function of the Bloch–Torrey equation was also
tained.
A rather powerful approach for the calculation of the MR

gnal in the presence of external magnetic field gradients has
en proposed in (16 ) in conjunction with studies of restricted
ffusion. This approach is based on dividing the gradient pulse
to successive short time intervals and then using a propagator
r each stage of the evolution—the so-called “multiple prop-
ator approach.” In Ref. (17 ) this method was reformulated
a simple-to-use form, which enables calculation of the sig-
l as a product of matrices. As demonstrated in (16, 17) for
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EFFECTS OF RESTRICTED DI

one-dimensional diffusion and in (18) for cylindrical and spher
ical geometries, the multiple propagator approach provides
very good approximation for the SE signal as verified by com
parison with previous Monte Carlo simulations (19–22).

In the present paper we apply a method similar to the mul
tiple propagator approach to describe the FID and SE signa
behavior, exemplifying it by three classical models: (i) one
dimensional (1D) model, in which diffusion is restricted by tw
parallel infinite planes with the field gradient applied norma
to the planes; in this case, only diffusion along the normal af
fects the signal; (ii) 2D model, in which spins diffuse in a
infinite cylinder, the field gradient being applied perpendicula
to the cylinder axis; only diffusion in the basal plane affect
the signal; (iii) 3D model, with spins diffusing in a sphere. A
boundaries are supposed to be reflecting and nondepolarizing
We show how the static dephasing-like oscillating time depen
dence of the FID signal transforms with increasing diffusio
coefficient to the monotonic exponential decay in the motiona
narrowing regime. Quantitative conditions of applicability of th
Gaussian approximation for describing the FID and SE signal
are found. A spatial distribution of signal density and the edg
enhancement effect are analyzed. We also demonstrate that th
presence of restrictive barriers in a one-compartment model ca
result in a quasi-two-compartment behavior of MR signal. Thi
result might contribute to explanation of experimental finding
(see, e.g., (23–28)) of biexponential diffusion attenuation.

2. RANDOM WALK APPROACH

In the general case, the signal produced by a system of a larg
number of precessing spins at time t after RF pulse is

S(t) = S0(t) s(t), s(t) = 〈exp[iϕ(t)]〉, [1

where the factor S0(t) describes the signal time dependence i
the absence of diffusion-sensitizing gradients and accounts fo
the transverse T2 relaxation, ϕ(t) is the phase accumulated by
single spin by time t , and 〈· · ·〉 means averaging over all possibl
initial positions and trajectories. In an inhomogeneous magneti
field, H = H(r, t), the phase ϕ(t) of the spin moving along
given trajectory r = r(t) can be written as

ϕ(t) =
t∫

0

dt ′ ω(r(t ′), t ′), [2

where the Larmor frequency ω = γ H. The phase in Eq. [2] de
pends on all the points of the trajectory.

Following the well known procedure for numerical calcu
lation of integrals, we divide the spin’s trajectory into n sma
intervals �t , t = N ·�t , and use the trapezoidal approximation[

ω(r , 0) + ω(r , t) N−1∑ ]

ϕ(t) � �t · 0 N

2
+

n=1

ω(rn, tn) , [3]
FUSION ON SIGNAL FORMATION 9

.

,

where tn = n · �t and rn = r(tn) are points successively passe
by the spin. Note that the Larmor frequency depends on tim
both explicitly (due to the time dependence of the magneti
field) and implicitly (due to the motion). In what follows, w
restrict ourselves to considering diffusion in a constant fiel
gradient, H = G · r, G = const. In this case, only the implici
time dependence of the Larmor frequency is present and th
phase can be written in the form

ϕ(t) = γ G �t

(
r0 + rN

2
+

N−1∑
n=1

rn

)
. [4

The phase [4] corresponds to a specific spin’s trajectory. T
obtain the signal, we should further average the signal exp(iϕ(t)
over all possible trajectories. We introduce the probability of th
spin starting at point r0 and successively passing the points r1

r2, . . . , rN at times t1, t2, . . . , tN . This probability is a product

ρ(r0) · P(r1, r0, �t) · P(r2, r1, �t) · . . . · P(rN , rN−1, �t),

[5

where ρ(r0) is the initial spin distribution (for the homogeneou
distribution, ρ(r0) = 1/V , where V is the system volume) an
P(r, r′, �t) is the propagator determining the probability tha
a particle starting at the point r′ moves to the point r durin
the time interval �t . In the random walk approximation, th
propagator P(r, r′, �t) satisfies the diffusion equation

∂ P

∂t
= D∇2 P [6

with the initial condition, P(r, r′, 0) = δ(r−r′) (here δ(r) is th
Dirac delta function), and boundary conditions specified for th
system under consideration.

Substituting Eqs. [4]–[5] in Eq. [1], we obtain the net signa
produced by the diffusing spins,

s = 1

V

∫
V

dr0

∫
V

dr1 · · ·
∫
V

drN exp

[
iQ

(
r0 + rN

2

+ r1 + r2 + · · · + rN−1

)]
· P(r1, r0, �t)

× P(r2, r1, �t) · · · P(rN , rN−1, �t), [7

where Q = γ G · �t .
Because it is the Green’s function of the diffusion equation [6]

the propagator P(r, r′, t) allows the standard expansion in term
of the orthogonal set of eigenfunctions {uk(r), k = 0, 1, 2, . . .

of the Sturm–Liouville problem for the geometry under consid
eration,

∞

P(r, r′, t) = 1

V
k=0

uk(r)u∗
k (r′) exp(−λk t), [8]
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4 SUKSTANSKII AND

here the λk are the corresponding eigenvalues. The functions
k(r) are orthogonal to each other and satisfy the normalization
nditions

1

V

∫
V

dr|uk(r)|2 = 1. [9]

Substituting expansion [8] in Eq. [7], after some rearrange-
ents, we obtain

s(t) =
∑

k1k2,...,kN

Fk1

(
Q
2

)

k1k1Uk1k2 (Q) 
k2k2Uk2k3 (Q)

× 
k3k3 · · · UkN−1kN (Q)
kN kN F∗
kN

(
−Q

2

)
, [10]

here

Fk(Q) = 1

V

∫
V

dr uk(r) exp(iQr) [11]


kk = exp(−λk �t) [12]

Ukk ′ = 1

V

∫
V

dr u∗
k (r)uk ′ (r) exp(iQr). [13]

Introducing the row vector F = {Fk}, the matrix Û = {Ukk ′ },
d the diagonal matrix 
̂ = diag {
kk}, the expression [10]
n be written as a matrix product

(t) = F
(

Q
2

)
· Λ̂(�t) · [Û(Q) · Λ̂(�t)]N−1 · F†

(
−Q

2

)
, [14]

here F† is the Hermitian conjugate of F.
An expression similar to Eq. [14] can be readily obtained (as
e particular case G(t) = const) from the general expression for
arbitrary gradient waveform given in Ref. (17) in the frame-

ork of the multiple propagator approach. The minor difference
in the arguments of the vector elements F. However, though
e mathematical structures of both approaches are very similar,

ur approach is based on the very transparent physical picture
f the random walk description of diffusion. Therefore we refer

our approach as the random walk approach (RWA).
The matrix form of the expressions [14]–[18] for the sig-

al substantially facilitates its calculation, which can be per-
rmed by means of any matrix-handling tools like Mathematica

r MatLab. For this purpose we should choose an appropriate
me step �t and a number of eigenfunctions involved in the
pansion [8] (the dimensionality M of the matrices Û and Λ̂).
s the matrix elements 
kk [12] decrease exponentially with

k , it is possible to restrict M to some comparably small value
etermined by the precision criteria (see below).
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Our approach allows us to not only find out the net signal but
so calculate a signal density σ = σ (r, t) produced by all spins
arting from a given space point r as well as a signal density
ABLONSKIY

′ = σ ′(r, t) produced from a given point of the system, i.e.,
all spins ending their trajectories at a point r at a time t . The

nsity σ (r, t) can be readily calculated by averaging a phase [4]
er all trajectories starting at a point r0 without integration over
in Eq. [7]. Similarly, to calculate the signal density σ ′(r, t),

tegration over the final point of spin trajectory rN should be
iminated in Eq. [7]. As a result, the signal densities σ (r, t) and
′(r, t) can be written in the form

(r, t) = ϕ

(
r,

Q
2

)
· Λ̂(�t) · [Û(Q) · Λ̂(�t)]N−1 · F†

(
−Q

2

)
,

[15]

′(r, t) = F
(

Q
2

)
· Λ̂(�t) · [Û(Q) · Λ̂(�t)]N−1 · ϕ†

(
r, −Q

2

)
,

[16]

here the elements of the vector ϕ are

φk(r, Q) = 1

V
uk(r) exp(iQr). [17]

is easy to see that σ (r, t) = σ ′(r, t). In addition, the function
(r, t) can be proved to be an exact solution to the Bloch–Torrey
uation (13) (the proof will be published elsewhere).
The expression [14] corresponds to the FID signal. A similar
pression for the SE signal with the echo time t can be written
the form

E(t) = T̂T̂†, T̂ = F
(

Q
2

)
· Λ̂(�t) · [Û(Q) · Λ̂(�t)]N/2−1.

[18]

As mentioned in the Introduction, we will compare the results
RWA with those obtained in the Gaussian approximation. In

is approximation, the signal is calculated by means of the phase
stribution function P(ϕ, t), which is assumed to be Gaussian
ith zero mean value, 〈ϕ(t)〉 = 0) (29, 30),

P(ϕ, t) = 1

(2π〈ϕ2(t)〉)1/2
exp

[
− ϕ2

2〈ϕ2(t)〉
]
. [19]

he signal in the Gaussian approximation is equal to

s(t) =
∫

dϕ P(ϕ, t) exp(iϕ) = exp

[
−〈ϕ2(t)〉

2

]
. [20]

r the signal in the presence of the field gradient G(t), the
antity 〈ϕ2(t)〉 can be written in the form

〈ϕ2(t)〉 = 2γ 2
t∫

dt1

t1∫
dt2

∫
dr1

∫
dr2(G(t1)r1)
V
0 0 V V

× (G(t2)r2)P(r1, r2, t1 − t2). [21]
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EFFECTS OF RESTRICTED DI

In the case of FID signal, G(t) = const. The case of SE signa
can be described by changing the gradient sign at t/2.

3. THE 1D MODEL

In the simplest case of one-dimensional diffusion, in which th
spins are distributed between two nondepolarizing, reflecting
infinite parallel planes localized at positions x = 0 and x = 2a
a solution to the diffusion equation [6] with boundary condition
∂ P/∂x|x=0 = ∂ P/∂x|x=2a = 0 is well known (see, e.g., (31)
and is given by Eq. [8] with

λk = Dβ2
k

a2
, βk = πk

2
[22

and the eigenfunctions

uk(x) = ηk cos
πkx

2a
, [23

where the normalization factors are η0 = 1 and ηk = √
2 fo

k �= 0.
For the constant field gradient symmetric with respect to th

center of the interval, H = G(x −a), we readily obtain the com
ponents of the vector F and of the matrix Û,

Fk = ηk fk, Ukk ′ = ηk ηk ′

2

[
fk+k ′ + f|k−k ′|

]
, [24

fk = 2i�

[(πk)2 − 4�2]
[−exp(−i�) + (−1)k exp(i�)],

[25
� = Qa = γ Ga �t.

There are two characteristic time parameters in the mode
determining the signal behavior: the diffusion time tD , whic
determines the time needed for a spin to diffuse over the system
size a, and the dephasing time tc, which defines the time of signa
dephasing in the absence of diffusion,

tD ≡ a2

D
, tc ≡ 1

γ Ga
. [26

If we measure time in the units of one of these characteristi
times, for example, tc, the FID signal dependence on τ = t/t
will be governed by the sole dimensionless parameter

p = tc
tD

= D

γ Ga3 . [27

The parameter � in Eq. [25] and the elements of the matri
Λ̂ [12] are equal to
� = �τ ≡ �t

tc
, 
kk = exp

(−β2
k p · �τ

)
. [28]
FUSION ON SIGNAL FORMATION 9

,
,

,

The dimensionless time τ and the parameter p are similar t
the parameter qa = γ Gaδ/2π (δ is the length of the gradien
pulses in pulse-gradient SE experiments) and the inverse “d
mensionless gradient” used in Refs. (16, 17, 21), respectively.

If diffusion is absent (p = 0), the signal s(τ ) in the one
dimensional system under consideration is described by the we
known sinc-function expression,

s(t) = sinc(τ ) = sin τ

τ
, p = 0 [29

(this result can be trivially derived directly from the genera
expressions [1]–[2]).

The expression for the FID signal for one-dimensional re
stricted diffusion obtained in the framework of the Gaussia
approximation (marked below by the upper index (G)) can b
easily obtained from Eqs. [20]–[21],

s(G)(τ ) = exp

[
− 2

p2

∞∑
k=1

g
(

pβ2
2k−1τ

)
β8

2k−1

]
, [30

where the function g(x) is

g(x) = exp(−x) + x − 1. [31

The SE signal in the Gaussian approximation is described b
Eq. [30], in which the function g(x) should be substituted by th
function ḡ(x) (see, e.g., (29, 30)),

g(x) → ḡ(x) = x − 3 + 4 exp(−x/2) − exp(−x). [32

4. THE 2D MODEL

The solution of the two-dimensional diffusion equation [6
within a circle of radius a, satisfying the boundary conditio
(∂ P/∂ρ)|ρ=a = 0, can be written in the form [8] with the eigen
functions (31)

uk(�, t) ≡ unµ(�, t) = ηnµ Jn

(
βnµ

ρ

a

)
exp(in ψ), [33

and the eigenvalues

λk ≡ λnµ = Dβ2
nµ

a2
. [34

The radius ρ and polar angle ψ define the two-dimensiona
radius-vector � in the polar coordinate system, the Jn(x) are th
Bessel functions (n = 0, ±1, ±2, . . .), andβnµ (µ = 0, 1, 2, . .

are nonnegative roots of the equation J ′
n(x) = 0. The normaliza

tion factor ηnµ determined by the condition [9] is equal to
ηns =
[(

1 − n2

β2
nµ

)
· J 2

n (βnµ)

]−1/2

. [35]
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TABLE 1
Roots of the Equations J′

n(x) = 0 (2D Model) and j ′
n(x) = 0

(3D Model) in Ascending Order

βnµ

n µ 2D 3D

0 0 0 0
1 0 1.8412 2.0816
2 0 3.0542 3.3421
0 1 3.8317 4.4934
3 0 4.2012 4.5141
4 0 5.3175 5.6467
1 1 5.3314 5.9404
5 0 6.4156 6.7565
2 1 6.7061 7.2899
0 2 7.0156 7.7253

Thus, in the two-dimensional case the eigenfunctions {uk} are
umerated by two indices, k = (n, µ). For numerical calcula-
ions based on Eq. [14] one should find roots of the transcen-
ental equation J ′

n(x) = 0 for different n, arrange the roots in
scending order, and choose first M of them, where M is a cho-
en dimensionality of the matrices Û and Λ̂. The first 10 roots
in ascending order) with corresponding values of k, n, and µ

re given in Table 1.
It should be noted that the roots corresponding to the Bessel

unction of orders n and −n are degenerate, βnµ = β−nµ. This
act makes it possible to facilitate numerical calculations and
horten the dimensionality M of the matrices Û and Λ̂ (while
elivering the same accuracy in the signal). For this purpose it is
onvenient to use the linear combinations of the eigenfunctions
33] with opposite n,

u(+)
nµ (�, t) = η̃nµ Jn

(
βnµ

ρ

a

)
cos nψ,

u(−)
nµ (�, t) = η̃nµ Jn

(
βnµ

ρ

a

)
sin nψ,

[36]

here η̃0µ = η0µ and η̃nµ = ηnµ

√
2 for n �= 0. In this case,

he index n runs over only nonnegative integers, but the eigen-
unctions with n �= 0 are numerated not by two but three in-
ices, k = (n, µ, ±). However, it turns out that the compo-
ents of the vector F corresponding to u(−)

nµ are equal to 0,
hereas the matrix Û is diagonal over the indices + and −.
herefore all terms connected with u(−)

nµ do not contribute to the
atrix product in Eq. [14], and we can operate with only the

unctions u(+)
nµ .

Substituting the eigenfunctions [33] in Eqs. [11] and [13],
or the constant field gradient G applied in the circle’s plane

U

w

w

t
f

a

H
t

w
t
e

XY ) in an arbitrary direction (let it be X , i.e., H = Gx =
ρ cos ψ), we obtain the components of the vector F and of the
atrix Û:

uk
ABLONSKIY

k ≡ Fnµ

= η̃nµ

πa2

a∫
0

ρdρ

2π∫
0

dψ exp(i Qρ cos ψ) · Jn

(
βnµ

ρ

a

)
cos nψ

= 2(−i)n η̃nµ

[
�Jn−1(�)Jn(βnµ) − βnµ Jn(�)Jn−1(βnµ)(

β2
nµ − �2

) ]
,

[37]

k1k2 ≡ Un1µ1,n2µ2

= η̃n1µ1 η̃n2µ2

πa2

a∫
0

ρdρ

2π∫
0

dψ exp(i Qρ cos ψ)

· Jn1

(
βn1µ1

ρ

a

)
cos n1ψ Jn2

(
βn2µ2

ρ

a

)
cos n2ψ

= η̃n1µ1 η̃n2µ2 · [(−i)n2+n1 W +
k1k2

(�) + (−i)n2−n1 W −
k1k2

(�)
]
,

[38]

ere W ± are given by

W ±
k1k2

(�) =
1∫

0

xdx Jn2±n1 (Qx)Jn1

(
βn1µ1 x

)
Jn2

(
βn2µ2 x

)
[39]

th � = Qa = γ Ga�t .
An analog of the sinc-function describing the FID signal in

static dephasing regime (p = 0) for the 2D model has the
rm

s(τ ) = 2J1(τ )

τ
, p = 0. [40]

In the Gaussian approximation the FID signal is described by
expression similar to Eq. [30]:

s(G)(τ ) = exp

[
− 2

p2

∞∑
µ=0

g
(

pβ2
1µτ

)
β6

1µ

(
β2

1µ − 1
)
]
. [41]

re β1µ are the positive roots of the equation J ′
1(x) = 0 and

function g(x) is given by Eq. [31].

5. THE 3D MODEL

The solution of the three-dimensional diffusion equation [6]
thin a sphere of radius a, satisfying the boundary condi-
n (∂ P/∂r )|r=a = 0, can be written in the form [8] with the
enfunctions (31)

( )

(r, t) ≡ unmµ(r, t) = ηnmµ jn βnµ

r

a
P |m|

n (cos θ ) exp(imψ),

[42]
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EFFECTS OF RESTRICTED DI

and the eigenvalues

λk ≡ λnµ = Dβ2
nµ

a2
. [43

Here the radius r and polar and azimuth angles θ and ψ defin
the three-dimensional radius-vector r in spherical coordinates
the jn(x) are the spherical Bessel functions (n = 0, 1, 2, . . .), th
βnµ(µ = 0, 1, 2, . . .) are the nonnegative roots of the equation
j ′
n(x) = 0, and the Pm

n (x) (|m| ≤ n) are the associated Legendr
polynomials. The normalization factor ηnmµ determined by th
condition [9] is equal to

ηnmµ =
[

2(2n + 1)(n − |m|)!
3(n + |m|)!

β2
nµ[

β2
nµ − n(n + 1)

]
j2
n (βnµ)

]1/2

.

[44

Thus, in the three-dimensional model the eigenfunctions {uk

are numerated by three indices, k = (n, m, µ). As in the 2D
model described in the previous section, for numerical calcu
lations based on Eq. [14] one should find roots of the transcen
dental equations j ′

n(x) = 0 for different n, arrange the roots i
ascending order, and select the first M of them, where M is
chosen dimensionality of the matrices Û and Λ̂ (note that thes
roots are degenerate with respect to the azimuth index m). Th
values of the indices n, µ corresponding to the first 10 roots i
the 3D model (arranged in ascending order) are the same as i
the 2D model discussed above, therefore they are given in th
same Table 1.

Substituting the eigenfunctions [42] in Eq.[11], for a constan
field gradient G applied in an arbitrary direction (let it be Z , i.e
H = Gz = Gr cos θ ), we obtain the components of the vector F

Fk ≡ Fnmµ = 3ηnmµ

4πa3

a∫
0

r2 dr

π∫
0

sin θdθ

2π∫
0

dψ

× exp(i Qr cos θ ) · jn

(
βnµ

r

a

)
P |m|

n (cos θ ) exp(imψ)

= 3i nηn0µ

[
�jn−1(�) jn(βnµ) − βnµ jn(�) jn−1(βnµ)(

β2
nµ − �2

) ]
· �m,

[45

where �mn is the Kronecker delta. Thus, only components o
the vector F corresponding to m = 0 differ from zero. It can als
be easily shown that the matrix Û is diagonal with respect t
the azimuth index m, Un1m1µ1,n2m2µ2 ∼ �m1,m2 . Consequently
all terms connected with the eigenfunctions uk with m �= 0 d
not contribute to the matrix product in Eqs. [14]–[18], and w
will further operate only with the eigenfunctions with m = 0
omitting the azimuth index m in all expressions.
Substituting the eigenfunctions [42] with m = 0 in Eq. [13]
and making use of the formula (32)

e
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Pn1 (x)Pn2 (x) =
min{n1n2}∑

l=0

Cn1n2l Pn1+n2−2l(x),

Cn1n2l = an1−lan2−lal

an1+n2−l
· (2n1 + 2n2 − 4l + 1)

(2n1 + 2n2 − 2l + 1)
, [46

ap = (2p − 1)!!

p!
,

we obtain the elements of the matrix Û in the sphere model,

Uk1k2 ≡ Un1µ1,n2µ2

= 3ηn1µ1ηn2µ2

4πa3

a∫
0

r2dr

π∫
0

sin θ dθ

2π∫
0

dψ exp(i Qr cos ψ

· jn1

(
βn1µ1

r

a

)
Pn1 (cos θ ) jn2

(
βn2µ2

r

a

)
Pn2 (cos θ )

= 3ηn1µ1ηn2µ2

min{n1,n2}∑
l=0

Cn1n2l i
n1+n2−2l Vk1k2l(Q), [47

Vk1k2l(Q) =
1∫

0

x2dx jn1+n2−2l(Qx) jn1

(
βn1µ1 x

)
jn2

(
βn2µ2 x

)
,

[48

where � = Qa = γ Ga �t .
An analog of the sinc-function describing the FID signal in th

static dephasing regime (p = 0) for the 3D model has the form

s(τ ) = 3 j1(τ )

τ
= 3

τ 3
(sin τ − τ cos τ ), p = 0. [49

In the Gaussian approximation the FID signal is described by
the expression similar to Eq. [30],

s(G)(τ ) = exp

[
− 2

p2

∞∑
µ=0

g
(

pβ2
1µτ

)
β6

1µ

(
β2

1µ − 2
)
]
, [50

where the β1µ are the positive roots of the equation j ′
1(x) = 0

and the function g(x) is given in Eq. [31].

6. RESULTS AND DISCUSSION

As mentioned above, for numerical calculations in the frame
work of RWA, we need to choose two quantities: the time-step
�t and the matrix dimension M . The first value should be chosen
such that �t will be much less than both the characteristic times
�t � tD and �t � tc. If p ≤ 1, then the condition �t � tc i
stricter and the dimensionless interval �τ = �t/tc = 1/20 turn
out to be sufficiently small for calculating the signal with an ac
curacy of 0.5%. For p > 1, the inequality �τ � 1/p must hold
for example, for p = 2 this accuracy is achieved at �τ ≈ 1/50
The matrix dimension M is determined by the k-dependenc

of the matrix elements 
kk , which decrease exponentially,
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kk = exp(−pβ2
k τ ), therefore smaller p’s require larger M . Our

lculations showed that in the interval τ < 20 the accuracy
5% is achieved at M = 10 for p < 0.1. For 0.1 < p < 1 one
n choose M = 5, and M = 3 is enough for p > 1. In what fol-
ws, we display numerical results calculated according to the
ove-described criteria.

General Features of MR Signal

The FID signal for the 1D model is plotted in Fig. 1 for several
lues of the parameter p. The curves corresponding to small
(0, 0.05, 0.1) demonstrate oscillating behavior whereas the
rve for p = 0.5 is monotone. In more detail the evolution of the

FID signal behavior with increasing parameter p is shown
Fig. 2 in a logarithmic scale (solid lines). Deep minima of
|s(τ )| correspond to roots of s(τ ) and obviously tend to −∞.
r small p, the behavior of the signal is similar to the oscillating
havior in the static dephasing regime (see Eq. [29]); the roots
the function s(τ ) are arranged approximately equidistantly,

erefore we can speak about a “period” of the oscillations. With
increasing, the “period” of the oscillations increases, the roots
s(τ ) shifting to higher values of τ . For p ≥ 0.45 the minima

sappear, which means the function s(τ ) becomes monotone. In
is monotone regime the slope of the curves in Fig. 2 decreases
ith p increasing—a manifestation of the motional narrowing

m
t
t
m

o
(

fect.

F
≤

and asymptotically tends to infinity at p → ∞; (2) the “period”
IG. 2. The FID signal (logarithmic scale) in the 1D model for different values of the parameter p = t /t . Nearly periodic oscillating behavior is present for

0.4 with period increasing with increasing p. For p > 0.45, a monotonic decay is
ABLONSKIY

FIG. 1. The FID signal s(t) in the 1D model. Times are expressed in di-
nsionless units, τ = t/tc , with tc being the characteristic dephasing time,

= (γ Ga)−1. The parameter p is tc/tD = D/(γ Ga3). The transition between
static case with oscillating FID signal to the motional narrowed case with

notonic signal is evident between p = 0.2 and 0.5.

There are three possible ways for the transformation from
cillating to monotone behavior of the function s(τ ) to occur:
) the “period” of the oscillations increases with p increasing
c D

evident. The dashed curves show the Gaussian phase approximation.
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of the oscillations tends to infinity at a certain finite bifurca
tion point p = pc; (3) there is a set of bifurcation points, i
which roots τn(n = 1, 2, . . .) of the equation s(τ ) = 0 disappea
by pairs. To determine how the transformation actually occur
we numerically analyze the dependence of the roots τn on th
parameter p. Figure 3 shows the p-dependence of the smal
est root τ1 (the p-dependence of the other roots is similar). Fo
p = 0, we have τn = nπ (see Eq. [29]); with increasing p a
roots also increase, remaining approximately equidistant, and a
p = pc ≈ 0.443 all τn tend to infinity. It means that there is
single bifurcation point pc = 0.443, where the “period” of os
cillation of the FID signal s(τ ) becomes infinite and monoton
behavior of the FID signal sets in (case 2). The dashed lines i
Fig. 2 display the FID signal calculated in the framework of th
Gaussian phase approximation (see Eq. [30]).

The logarithm of the SE signal in the 1D model, calculated o
the basis of Eq. [18], is illustrated in Fig. 4 for the same value
of the parameter p as in Fig. 2 for the FID signal. In the stati
dephasing regime (p = 0), we obtain sSE = 1; we therefore sub
stituted this trivial graph by that for p = 0.01. For all p th
dependence of the ln(sSE(τ )) on τ is monotone; however, in th
interval 0.1 ≤ p ≤ 0.3 there are characteristic oscillations of i
derivative with respect to τ . As for the FID signal, the “period
of these oscillations increases as p increases, and for p > 0.4 th

oscillations disappear. The Gaussian approximation adequately 2D and 3D models, respectively (solid lines), along with the
FIG. 4. The SE signal (logarithmic scale) in the 1D model for the same
amplitude decay is always monotonic, oscillatory variations in the slope appea
FUSION ON SIGNAL FORMATION 9
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FIG. 3. The dependence of the lowest root (τ1) of the equation s(τ ) = 0 i
the 1D model on the parameter p = tc/tD . At the bifurcation point p = 0.443 τ

(as well as all other roots of this equation) tends to infinity and the signal s(τ
becomes a monotone function.

describes the SE signal in the short-time interval for small value
of p and in the motional narrowing regime (p ≥ 1).

In Figs. 5 and 6 we plot ln(|s(τ )|) for the FID signal in th
values of the parameter p = tc/tD as in Fig. 2 for the FID signal. While the echo
r for p ≤ 0.3.
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FIG. 5. The FID signal (logarithmic scale) in the 2D model for different values of the parameter p = tc/tD . The oscillating behavior is present for p < 0.3.
FIG. 6. The FID signal (logarithmic scale) in the 3D model for different values of the parameter p = tc/tD . The oscillating behavior is present for p < 0.2.
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corresponding results of the Gaussian approximation (dashed
lines). The general features of these graphs are the same as fo
the 1D model. In the static dephasing regime, when the signal
are described by Eqs. [40] and [49], and for small p-value, th
FID signal oscillates, the distances between roots of the function
s(t) increasing as p increases. The transition from the oscillating
behavior to the monotone one takes place for smaller values o
the parameter p than in the 1D model: the oscillations disappea
at the bifurcation point pc ≈ 0.27 in the 2D model and pc ≈ 0.17
in the 3D model.

Thus, the evolution of the FID signal from static dephasing
like behavior to the motional narrowing regime in the 2D and
3D model is “faster” than in the 1D model. This result should
be expected because one-dimensional diffusion along the field
gradient in a sphere is effectively more restricted than in a circle
which in its turn is more restricted than in a segment.

Gaussian Approximation

As seen from Figs. 2, 4–6, the signals predicted by th
Gaussian approximation for small p-values coincide with th
exact results in the short-time regime. As p increases and os
cillations in the time-dependence of the signals disappear, th
discrepancy between solid and dashed curves progressively nar
rows, and for p ≥ 1 in the 1D model the Gaussian approxima
tion becomes an adequate approach for all time intervals, as ex
pected. In the 2D and 3D models, the Gaussian approximation
becomes adequate in all time intervals for p ∼ 0.8 and p ∼ 0.5
respectively.

A qualitative comparison of the exact results obtained in th
framework of RWA with those obtained in the Gaussian phas

approximation can be made by visual comparison of the solid the signal. In this regime, both the FID and SE signals can be

.
and dashed curves in Figs. 2 and 4–6. To estimate quantitatively

TABLE 2
The Relative Error (in %) Made by the Gaussian Approximation as Compared to the Exact Results Obtained in the Framework

of the Random Walk Approach for the FID Signal

s(τd1) = e−1 s(τd2) = e−2

s(τd1) − s(G)(τd1)

s(τd1)
, % τd1

s(τd2) − s(G)(τd2)

s(τd2)
, % τd2

p 1D 2D 3D 1D 2D 3D 1D 2D 3D 1D 2D 3D

0.1 23 16 14 2.4 3.0 3.7 131 94 78 3.1 4.0 5.3
0.2 23 17 10 2.7 3.7 5.1 118 70 33 3.6 5.4 8.7
0.3 22 13 6 3.1 4.6 7.0 89 40 13 4.3 7.9 13.1
0.4 18 9 3 3.5 5.8 9.1 68 21 7 5.5 10.7 17.5
0.5 15 6 2 4.1 7.1 11.2 45 13 4 7.0 13.5 21.9
0.6 11 4 1 4.7 8.4 13.4 29 9 3 8.5 16.3 26.3
0.7 9 3 1 5.4 9.8 15.5 21 6 2 10.1 19.1 30.7
0.8 7 2 0 6.1 11.1 17.7 16 5 1 11.7 21.8 35.1
0.9 6 2 0 6.9 12.5 19.9 12 4 0 13.2 24.6 39.5
1.0 5 1 0 7.6 13.8 22.1 10 3 0 14.7 27.3 44.0

described within the framework of the Gaussian approximation
Note. Separate results are given for times where the signal has decayed by 1
τ = t/tc .
FUSION ON SIGNAL FORMATION 10

,

,

the applicability of the Gaussian approximation, we compute th
relative error

ε = (
s(τ ) − s(G)(τ )

)/
s(τ ) [51

at the time τ , where the signal has decayed by a certain facto
ν, S(τ )/S0 = ν. In Tables 2 and 3 we provide the relative erro
(in %) made by the Gaussian approximation in comparison wit
the exact results at the times τd1 and τd2, where ν1 = e−1 an
ν2 = e−2, respectively, for the FID and SE signals in the 1D, 2D
and 3D models.

For the FID signal, the error monotonically decreases wit
increasing value of the parameter p, whereas the times τd1 an
τd2 monotonically increase. A single exception is the 2D mode
where ε(τd1, p = 0.1) < ε(τd1, p = 0.2). For the SE signal, th
dependence of the error on p is nonmonotonic. It should be un
derlined, however, that the error for the SE signal at the tim
τd1 does not exceed 7% even for the 1D model; this means tha
the Gaussian approximation is a rather good approach in th
most important (from the experimental point of view) acquis
tion time interval, τ ≤ τd1 (i.e., with substantial remaining signa
amplitude).

Short- and Long-Time Approximations

Analytical expressions for both FID and SE signals ca
be obtained in some limiting cases. Consider first the cas
tD ≤ tc(p ≥ 1). In the motional narrowing regime t � tD , th
behavior of the FID signal is similar to that for the SE signa
because, due to fast diffusion, the 180◦ RF pulse cannot refo
cus the spin’s phase and therefore does not substantially affec
/e and 1/e2. The parameter p is tc/tD . Times are expressed in dimensionless units,
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TABLE 3
The Relative Error (in %) Made by the Gaussian Approximation as Compared to the Exact Results Obtained in the Framework

of the Random Walk Approach for the SE Signal

sSE(τd1) = e−1 sSE(τd2) = e−2

sSE(τd1) − s(G)
SE (τd1)

sSE(τd1)
, % τd1

sSE(τd2) − s(G)
SE (τd2)

sSE(τd2)
, % τd2

1D 2D 3D 1D 2D 3D 1D 2D 3D 1D 2D 3D

1 3 1 3 6.4 6.8 7.2 24 10 18 9.0 9.0 9.8
2 2 5 5 5.6 6.4 7.4 17 26 19 9.8 9.1 11.4
3 6 6 4 5.6 6.6 8.6 28 23 11 7.6 10.2 14.8
4 7 6 3 5.6 7.4 10.2 32 17 6 8.2 12.3 18.7
5 7 5 2 5.8 8.4 12.2 28 12 4 9.0 14.8 22.7
6 7 3 1 6.2 9.4 14.2 23 8 2 10.2 17.2 27.0
7 6 3 1 6.6 10.6 16.2 18 6 2 11.4 20.0 31.3
8 5 4 0 7.2 11.8 18.2 14 5 1 12.8 22.5 35.6
9 4 2 0 7.8 13.2 22.4 11 4 0 14.2 25.1 40.0
0 4 1 0 8.4 14.3 22.5 9 3 0 15.6 28.0 44.4
d

n
h
ty
x

g
i

e
l

s
a

t
n
n

h
i
a

Note. Separate results are given for times where the signal has decayed by 1/e an
= t/tc .

the long-time limit, t � tD (pτ � 1), the arguments of the
nctions g(x) [31] for the FID signal and ḡ(x) [32] for the SE
gnal, entering Eqs. [30], [41], and [50], are large; therefore
(x) � ḡ(x) � x , the sums in Eqs. [30], [41], and [50] can be
lculated exactly, and the signal can be written as

(τ ) � sSE(τ ) � exp

(
−ζd

τ

p

)
= exp

(
−ζd

(γ G)2a4t

D

)
, [52]

here the numerical coefficient ζd is determined by the model
imensionality d:

ζ1 = 2/15, ζ2 = 7/96, ζ3 = 8/175 [53]

or the SE signal, an expression similar to Eq. [52] was ob-
ined in (30)). Note that ζ3 < ζ2 < ζ1; i.e., the signal decay rate
ecreases going from 1D to 2D to the 3D model. This result
ould be expected because the motional narrowing effect is
ronger in the model of higher dimensionality, where diffusion
ong the field gradient is effectively more restricted.
In the short-time limit, t � tD ≤ tc(pτ � 1), the functions

(x) and ḡ(x) can be approximated as g(x) � x2/2 and
(x) � x3/12, respectively. The FID signal in this limiting case
kes the form

s(τ ) � exp(−ξdτ
2) = exp

[
−ξd

(
t

γ Ga

)2]
, [54]

ith the coefficients ξd depending on the model dimension-
ity d:

N
i
s
i
e

(
s

f
p
w
i
p

(
i
i

t
s
p

ξ1 = 1/6, ξ2 = 1/8, ξ3 = 1/10. [55]
ef
T

1/e2. The parameter p is tc/tD . Times are expressed in dimensionless units,

ote that ξ3 < ξ2 < ξ1, that means spin dephasing is faster
the system of lower dimensionality. The SE signal in the

ort-time limit is independent from the model dimensional-
d and the system size a and is described by the classical

pression (33),

sSE(τ ) � exp

(
− 1

12
pτ 3

)
= exp

[
− 1

12
(γ G)2 Dt3

]
[56]

eneral conditions of applicability of such a t3-behavior of SE
gnal is discussed in (34)).
Thus, the behavior of the FID signal in the short-time limit dif-
rs considerably from that of the SE signal. This difference takes
ace not only if t � tD ≤ tc but also in the slow motion regime,
hen t � tc ≤ tD . In this regime, the Gaussian approximation
adequate for all p-value, and the FID signal is described by
rabola

s(τ ) � 1 − ξdτ
2 [57]

his result can be readily obtained by expanding the exponent
Eq. [56] or the formulas for the case p = 0 [29], [40], and [49]
series in τ ).
It should be mentioned that a parabolic time dependence in
e short-time interval (t � tc, tD) is a general property of FID
gnal regardless of a specific system structure, as shown for
rticular cases in (4, 9, 35) and explained in (5).

Edge Enhancement Effect

Another important effect—the so-called edge enhancement

fect (36–41)—also follows from our theoretical approach.
he physical origin of this effect is that spin diffusion in the
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FIG. 7. The magnitude of the FID (solid lines) and SE (dashed lines) sign
density |σ | in the 1D model as a function of the dimensionless coordinate (x/2a
for fixed time τ = t/tc = 10 and p = 0.005 (curves 1) and p = 1 (curves 2). Th
edge enhancement is pronounced in curves 1, when t = 0.05 tD , and is practicall
absent in curves 2, when t = tD .

vicinity of system boundaries is effectively more restricte
than that away from the boundaries. The edge enhancemen
effect is pronounced in the case, when two conditions ar
satisfied: (1) a characteristic diffusion distance x0 ∼ (Dt)1/

that a spin travels over time t is much smaller than a sys
tem size a, x0 � a, or t � tD; (2) the field gradient is stron
enough to result in a substantial phase difference over x0

γ Gx0t � 1, i.e., t � (t2
c tD)1/3 (note that the combination i

the right-hand side of the latter inequality is independent from
the system size a). In dimensionless variables, these condition
are

p−1/3 � τ � p−1. [58

Obviously, the double-inequality [58] can hold only for p � 1
In the case t ≥ tD , diffusion “stirs” all spins and the signal densit
becomes practically homogeneous at time t .

As mentioned in Section 2, the RWA makes it possible to cal
culate the signal density σ (r, t) produced by spins starting from
a given space point r and the signal density σ ′(r, t) from a give
point r, i.e., the signal from all spins ending their trajectory a
r at time t (remind that σ (r, t) = σ ′(r, t)). The magnitude |σ
of the FID (solid lines) and SE (dashed lines) signal densit
for the 1D model is plotted in Fig. 7 as a function of the di
mensionless coordinate (x/2a) for two values of the parame
ter, p = 0.005 (curves 1) and p = 1 (curves 2) (time is fixed
τ = 10). As expected, the curves 1 corresponding to p = 0.00

have pronounced maxima at the boundaries (at x = 0 and at
x = 2a) whereas curves 2 are practically flat.
FUSION ON SIGNAL FORMATION 10

Biexponential Diffusion Attenuation

In the regime, when the edge enhancement effect can be ob
served, a general picture of the net signal is similar to that in
two-compartment system: one of the “compartments” comprise
spins located far from the edges and their diffusion can be consid
ered as unrestricted (fast-diffusion “compartment”). Diffusio
of spins from the second “compartment,” located in the vicinit
of the boundaries (at distance ∼(Dt)1/2), is more restricted du
to encountering the boundaries (slow-difusion “compartment”)
Therefore one can anticipate that the signal in this situation ca
be described by means of the biexponential function usuall
used for describing signals in two-compartment models,

s = f exp(−bD1) + (1 − f )exp(−bD2), [59

where D1 and D2 are the apparent diffusion coefficient
(ADC) in the compartments, f is the volume fraction o
the first compartment, and b is the b-value determined b
a gradient waveform. For the SE signal with the echo tim
t, b = (γ G)2t3/12.

We compared the SE signal in the 1D model, obtained in th
framework of RWA, with the biexponential function [59] b
fitting sSE as a function of the parameter b to Eq. [59] in the in
terval bD < 10 for several fixed dimensionless times τ ′ = t/tD

The results are summarized in Table 4. As we see, the biex
ponential function provides an excellent description of the the
oretical curves sSE (b) for τ ′ ≤ 1/6. The “volume fraction” o
the fast-diffusion “compartment” decreases with time becaus
the number of spins encountering the boundaries increases. Fo
higher τ ′(τ ′ > 1/6), the division of the system into “compart
ments” becomes meaningless: all the spins are stirred by dif
fusion and the signal cannot be described by the biexponentia
function [59]. For τ ′ ∼ 1 the signal dependence on the b-valu
becomes practically monoexponential. This regime correspond
to t ∼ tD , when all spins are stirred by diffusion and encounte
the boundaries and the signal density is almost uniform (dashe
curves in Fig. 7).

Thus, the close fit of experimental results to a biexponentia
function [59] is not sufficient to confirm the presence of tw

TABLE 4
The Results of Fitting the Theoretically Calculated SE Signal i

the 1D Model as a Function of the b-Value to the Biexponentia
Expression [59] for Different Dimensionless Time τ ′ = t/tD

τ ′ = t/tD f D1 D2 χ2

1/50 0.94 0.851 0.141 1.1 · 10−
1/20 0.91 0.842 0.117 1.9 · 10−
1/10 0.89 0.778 0.104 1.1 · 10−
1/6 0.86 0.706 0.092 1.4 · 10−
Note. D1 and D2 are the fast and slow apparent diffusion coefficients, respec-
tively, and f is the volume fraction of the fast-diffusion component; χ2 is the
statistical error.
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isntinct physical compartments: indeed, in the presence of re-
rictive barriers both fast and slow terms in [59] can arise from
e same physical compartment. This issue may be of interest for
terpretation of experimental data in the brain tissue and other

iological objects, where a biexponential diffusion attenuation
f the MR signal for large b-value (bD > 1) has been observed
ee, e.g., (23–28)) but has not been explained. Our results (bi-
ponential behavior for large bD and small volume fraction
rresponding to the slow-diffusion component) are in accor-

ance with experimental data and demonstrate the importance
f restrictive barriers. The important role of motional restrictions

explaining the origin of biexponential diffusion attenuation
tissue systems has also been demonstrated recently (42) by
tensive computer simulations based on detailed anatomic im-
es of axonal architecture.

7. CONCLUSIONS

We have presented a theoretical framework for analysis of the
ID and SE signal behavior in the presence of magnetic field
radients. The FID signal time dependence in 1D, 2D, and 3D
odels of restricted diffusion is shown to depend crucially on
e ratio between dephasing and diffusion characteristic times,
= tc/tD . For p = 0 (no diffusion, the static dephasing regime)
d for small values of p the FID signal oscillates with time, the
eriod” of the oscillations increases with increasing p and tends
infinity at a bifurcation point p = pc. The value of pc decreases

oing from 1D to 2D to 3D. For p > pc the FID signal time
ependence is monotonic and approaches a monoexponential
nction for p ∼ 1 (motion narrowing regime). We have also

rovided a quantitative comparison of our results (for the FID
gnal as well as for the SE signal) with those obtained in the
aussian phase approximation. Because the latter is broadly
sed for interpretation of experimental data, such a comparison
n be useful for estimation of the corresponding error. Our
proach makes it possible to analyze a space distribution of the

gnal density (transverse magnetization) and to demonstrate the
ge enhancement effect. The presence of restrictive barriers in

one-compartment model can lead to a quasi-two-compartment
ehavior of the MR signal. This result suggests a simple rationale
r the experimental findings of biexponential echo attenuation
rves in MR diffusion experiments with tissue systems.
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